Pearson Edexcel

Mark Scheme (Results)

October 2020

Pearson Edexcel GCE
In Chemistry (9CH0)
Paper 1: Advanced Inorganic and Physical
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code 9CH0_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is B $\quad\left(\mathrm{Al}^{2+}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+\mathrm{e}^{-}\right)$	$\mathbf{(1)}$
	\mathbf{A} is not correct because it is the equation for the first three ionisation energies	
	\mathbf{C} is not correct because an ion is gaining electrons	
D is not correct because an ion is gaining an electron		

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is C (Y)	(1)
	A is not correct because there is a steady increase in ionisation energies B is not correct because there is a steady increase in ionisation energies D is not correct because there is a large increase after the first ionisation energy, so Z is a Group 1 element	

Question Number	Answer	Mark
$\mathbf{1 (c)}$	The only correct answer is C (c)	(1)
	\mathbf{A} is not correct because it is carbon	
B is not correct because it is nitrogen		
\mathbf{D} is not correct because it is aluminium		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (d)}$	$\cdot \mathrm{N}^{3-} / \mathrm{O}^{2-} / \mathrm{F}^{-} / \mathrm{Na}^{+} / \mathrm{Al}^{3+}$	Do not award $\mathrm{Ne}, \mathrm{C}^{4-}, \mathrm{Si}^{4+}$	(1)

Question Number	Answer	Additional guidance	Mark
1(e)	A discussion that makes reference to the following points: - both elements / atoms have the last added electron in the d-subshell / d orbital (so are d-block elements) - but neither forms a (stable) ion with an incomplete d-subshell / d orbital (so are not transition metals) - Zn^{2+} is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}^{10}$ (so d subshell is full) - Sc^{3+} is $1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ (so d subshell is empty)	Do not award just 'contains delectrons' Allow 'transition elements form a (stable) ion with an incomplete d-subshell / d orbital' Allow [Ar]3d ${ }^{10}$ Allow [Ar]	(4)

Question Number	Answer	Mark
2(a)	The only correct answer is $\mathbf{A}\left(\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{2} \mathrm{ClCOOH}>\mathrm{HCl}\right)$ \underline{B} is incorrect because HCl is the only strong acid, so would have the lowest pH $\underline{\underline{C}}$ is incorrect because $\mathrm{CH}_{2} \mathrm{ClCOOH}$ is stronger than $\mathrm{CH}_{3} \mathrm{COOH}$ as the Cl atom stabilises the anion \bar{D} is incorrect because the stronger the acid the lower the pH , hence these are in reverse order	(1)

Question Number	Answer	Additional Guidance	Mark	
2(b)	• calculation of $\left[\mathrm{H}^{+}\right]$	(1)	Example of calculation $\left[\mathrm{H}^{+}\right]=10^{-2.20}=6.3096 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	
	• use of K_{a} expression to calculate K_{a}	(1)	$K_{\mathrm{a}}=\left(6.3096 \times 10^{-3}\right)^{2} / 0.240$ $=1.6588 \times 10^{-4}$ $\mathrm{p} K_{\mathrm{a}}=-\log \left[1.6588 \times 10^{-4}\right]=3.7802$ ignore SF except 1 SF ignore units allow TE throughout correct answer with no working scores 3	

Question Number	Answer	Mark
2(c)	The only correct answer is B (NaOH(aq) and excess $\left.\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right)$	(1)
	A is incorrect because the solutions would not form a buffer	
	C is incorrect because the solutions would not form a buffer D is incorrect because the solutions would not form a buffer	

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \text { 2(d) } & \text { The only correct answer is D (none of these three indicators) } & \text { (1) } \\ & \boldsymbol{A} \text { is incorrect because both acid and base are weak so pH range at equivalence is too narrow for bromothymol blue to change colour } \\ & \text { B is incorrect because both acid and base are weak so pH range at equivalence is too narrow for methyl orange to change colour } \\ \text { C is incorrect because both acid and base are weak so pH range at equivalence is too narrow for phenolphthalein to change colour }\end{array}\right]$.
(Total Question 2 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
3(a)	An explanation that makes reference to the following points (Structure consisting of) - lattice of positive ions / regular arrangement of positive ions - (in sea of) delocalised electrons - strong forces of attraction between ions and delocalised electrons (so high melting temperature) - so lots of (heat) energy needed to break attraction between ions and delocalised electrons / metallic bonds	M1 and M2 can be scored by use of a labelled diagram, but if both given both must be correct For example Allow charge on ion of $2+$ or $3+$ Diagram should show at least 4 ions (for M1) a number of electrons roughly consistent with charge on ions and random (for M2) The attraction between ions and delocalised electrons only needs to be mentioned once in M3 and M4 Allow 'lots of energy needed to separate the ions’	(4)

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	• octahedral	Allow octahedron / octahedral Ignore diagrams Do not award octagonal	$\mathbf{(1)}$

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	An explanation that makes reference to the following points - (ligand / water molecule causes) d orbitals to split (into 2 energy levels) - light/energy (in the visible region) absorbed to promote electrons (to higher d orbitals) - the remaining light / unabsorbed light / complementary colour / green light is transmitted	Allow d subshell for d orbitals Do not award d orbital splits Allow (some light) energy is absorbed when d-d electron transitions occur Do not award 'emitted' or transmission linked to electrons returning to ground state Allow reflected / emerged	(3)

Question Number	Answer	Additional Guidance	Mark
3(c)	An answer that makes reference to the following points: - (the equilibrium constant is large) so the equilibrium lies well / far to the right hand side $/[\operatorname{Cr}(E D T A)]^{-}$is more stable - as $\Delta S_{\text {system }}$ is positive / increases entropy (of the system) - as 2 mol of reactants form 7 mol of products	Allow forward reaction is very feasible / spontaneous / goes (virtually) to completion Allow an increase in the number of moles / particles / molecules if number of moles is given, they must be correct i.e. do not award 2 moles to 6 moles Do not award just ' 2 molecules form 7 molecules' Do not award M3 if M2 states 'entropy decreases'	(3)

Question Number	Answer		Additional guidance	Mark
3(d)(i)	- calculation of moles of $\mathrm{VCl}_{2}(\mathrm{aq})$ - calculation of moles of $\mathrm{Cl}_{2}(\mathrm{~g})$ - deduction of whole number ratio of $\mathrm{V}^{2+}: \mathrm{Cl}_{2}$ - deduction of electrons lost per vanadium ion - deduction of final oxidation number of V	(1) (1) (1) (1) (1)	Example of calculation $(40 / 1000) \times 0.100=4 \times 10^{-3} / 0.004(\mathrm{~mol})$ $(144 / 24000)=6 \times 10^{-3} / 0.006(\mathrm{~mol})$ $2 \mathrm{~V}^{2+}: 3 \mathrm{Cl}_{2}$ allow $\mathrm{V}^{2+}: 1.5 \mathrm{Cl}_{2}$ 6 electrons lost by $2 \mathrm{~V}^{2+}$, so 3 lost per V^{2+}, (+)5 Allow TE throughout Correct answer with no working scores M5 only	(5)

\(\left.$$
\begin{array}{|l|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Answer } & \text { Additional Guidance } & \text { Mark } \\
\hline \text { 3(d)(ii) } & & \begin{array}{l}\text { Ignore references to blue / green / turquoise or similar, as } \\
\text { intermediate colours, regardess of order } \\
\text { If no final oxidation state given in (d)(i) do not award M2 }\end{array}
$$ \& (2)

\& • purple / lilac / violet \& (1) \& Allow lavender / mauve for M1

Mark consequentially from (d)(i)\end{array}\right]\)| Do not award colourless |
| :--- |
| |

Question Number	Answer	Mark
4(a)	The only correct answer is C (magnesium sulfate)	(1)
	A is incorrect because Group 2 sulfates decrease in solubility down Group 2	
	B is incorrect because Group 2 sulfates decrease in solubility down Group 2	
D is incorrect because Group 2 sulfates decrease in solubility down Group 2		

Question Number	Answer	Mark
4(b)	The only correct answer is B (-157)	
A is incorrect because this is the value if the cycle is used in the opposite direction		
C is incorrect because this is the value if the hydration enthalpy for the chloride ion is not multiplied by 2		
D is incorrect because this is the value if the cycle is used in the opposite direction and the hydration enthalpy for the chloride ion is not multiplied by 2	(1)	

Question Number	Answer	Additional Guidance	Mark
*4(c)	This question assesses the student's ability to show a coherent and logically structured answer with linkages and fully sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages). In general, an answer with 5 or 6 IPs would score 2 reasoning marks, 3 or 4 IPs would score 1 reasoning mark, 0 , 1 or 2 IPs would score 0 reasoning marks. Reasoning marks may be reduced for extra incorrect chemistry.	(6)

	Indicative content - 2-methylpentane is insoluble in water as it cannot hydrogen bond to water (as none of the hydrogen atoms are electropositive) - 2-methylpentane is soluble in hexane as London forces in both compounds (are similar in strength / size) - so (resultant) forces in mixture are similar in magnitude to those in each liquid - potassium bromide is soluble in water as its ions are hydrated when dissolved - the enthalpy change of hydration is greater than / close to / compensates for the energy needed to break apart the lattice - potassium bromide is insoluble in hexane as any (London) forces that form between it and hexane would be smaller in magnitude than the forces between the ions	If there is no specific reference to types of intermolecular forces / interaction in IPs 1 and 2 then allow 1 IP for idea of 'like dissolves like' e.g. 2-methylpentane dissolves in hexane as they are both non-polar / does not dissolve in water as water is polar scores 1IP if both IP1 and IP2 not awarded Allow van der Waals / dispersion forces / instantaneous dipole-induced dipole Allow both form only London forces Ignore references to entropy Do not award if water is shown as split into ions	

Question Number	Answer		Additional Guidance	Mark
5(a)(i)	Any two observations from - solid dissolves / melts - condensation on sides of test tube - brown gas/ brown fumes/ brown $\mathrm{NO}_{2}(\mathrm{~g})$ produced - white solid / powder forms	(1) (1) (1) (1)	Do not award magnesium dissolved / just 'solid disappears' Allow 'steam given off' Ignore $\mathrm{NO}_{2} / \mathrm{O}_{2}$ / gas given off/ bubbles/ effervescence / gas relights a glowing splint Allow red-brown Ignore 'precipitate' Ignore 'magnesium oxide forms' Do not award ' Mg^{2+} forms'	(2)

Question Number	Answer	Additional Guidance	Mark
5(a)(ii)	An answer that makes reference to the following points: - Nitrates increase in stability down Group 2 as ionic radius increases (as you go down group) - so polarising ability of metal (ion) decreases / distorts (the electron cloud of) the anion less - weakening of $\mathrm{N}-\mathrm{O}$ bonds (in nitrate ion) is less	Allow charge density decreases as you go down Group 2 Do not award just 'atomic radius increases’ There has to be a mention of ions somewhere in M1 or M2 Allow reverse argument	(3)

(Total Question 5 = 12 marks)

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a) (i)}$	An explanation that makes reference to the following points	(1)	Ignore pi bond formed by sideways / less effective orbital overlap
	• C=C bond is weaker than 2 x C-C bond		
	as it consists of a pi and a sigma bond (rather than 2 sigma bonds)(1)		

Question number	Answer	Additional guidance	Mark
6(a)(ii)	- calculation of energy required to break reactant bonds - calculation of energy release when product bonds form - calculation of enthalpy change	Example of calculation: $\begin{aligned} & 5(\mathrm{C}-\mathrm{H})+(\mathrm{C}=\mathrm{C})+(\mathrm{C}-\mathrm{C})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+4(\mathrm{O}=\mathrm{O}) \\ & 5(413)+(612)+(347)+(358)+(464)+(4 \times 498) \\ & =5838\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & 6(\mathrm{C}=\mathrm{O})+6(\mathrm{O}-\mathrm{H}) \\ & (6 \times 805)+(6 \times 464) \\ & =7614\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ $5838-7614=-1776\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Ignore SF except 1 SF Allow TE from M1 and M2 Correct answer no working scores 3	(3)

Question Number	Answer		Additional Guidance	Mark
6(a)(iii)	An explanation that makes reference to one of the following points EITHER - $\Delta S_{\text {total }}$ is always positive (1) - As both $\Delta S_{\text {surroundings }}$ and $\Delta S_{\text {system }}$ are positive - OR - ΔG is always negative - as ΔH is negative and $\Delta S_{(\text {system })}$ is positive	(1) (1) (1) (1)	If no marking points awarded allow 1 mark for idea that $\Delta S_{\text {system }} / \Delta S_{\text {surroundings }} /$ entropy increases with correct explanation	(2)

Question Number	Answer		Additional Guidance	Mark
6(b)	- expression for $\Delta S_{\text {system }}$ - calculation of $\Delta S_{\text {system }}$ - expression for $\Delta S_{\text {surroundings }}$ - calculation of $\Delta S_{\text {surroundings }}$ - calculation of $\Delta S_{\text {totala }}$, correct units and comment on feasibility	(1) (1) (1) (1) (1)	$\begin{aligned} & \text { Example of calculation } \\ & \Delta S_{\text {system }}=[(6 \times 205)+(219.5)+(160.7)]-[(4 \times 213.6)+(5 \times 69.9) \\ & =1610.2-1203.9=(+) 406.3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \Delta S_{\text {surroundings }}=-\Delta H / T=-2778 \times 10^{3} \propto 298 \\ & =-9322.14765\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \Delta S_{\text {total }}=406.3-9322.14765 \\ & =-8915.85 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \text { (negative) so not feasible } \end{aligned}$ Ignore SF except 1 SF. Allow TE and KJ throughout	(5)

Question Number	Answer	Additional Guidance	Mark
$7(\mathbf{a})(\mathbf{i})$	$\bullet \quad$$K_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{l})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]$ $\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{IOO})\left[\mathrm{CH}_{3} \mathrm{CH} \mathrm{O}_{2} \mathrm{OH}(\mathrm{I})\right]\right.$	Ignore omission of state symbols Do not award round brackets	(1)

Question Number	Answer	Additional Guidance	Mark
7(a)(ii)	- expression for equilibrium amounts in terms of x - use equilibrium amounts in K_{c} expression and rearrangement to find amount of product / express as correct quadratic expression	Example of calculation Amounts $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}=1.2-\mathrm{x} ; \mathrm{CH}_{3} \mathrm{COOH}=1.2-\mathrm{x} \text {; }$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}=\mathrm{x} ; \mathrm{H}_{2} \mathrm{O}=\mathrm{x}$ $\begin{aligned} & K_{\mathrm{c}}=\left(\underline{(\mathrm{x} O \mathrm{vol})^{2}}\right. \\ & \quad[(1.2-\mathrm{x}) O \mathrm{vol}]^{2} \\ & K_{\mathrm{c}}=\left(\mathrm{x}^{2} \mathrm{Ovol}^{2}\right) O\left((1.2-\mathrm{x})^{2} \mathrm{Ovol}^{2}\right) \\ & K_{\mathrm{c}}=\mathrm{x}^{2} \circ(1.2-\mathrm{x})^{2} \text { so } \mathrm{x}^{2}=K_{\mathrm{c}} \times(1.2-\mathrm{x})^{2} \\ & \mathrm{x}=\sqrt{ } K_{\mathrm{c}} \times(1.2-\mathrm{x}) \\ & \mathrm{x}=0.6349801 .52915 ; \mathrm{x}=0.41525=0.42 \end{aligned}$ (So amounts of each product $=0.42(\mathrm{~mol})$) Allow use of quadratic equation for M2 Allow M2 for expression without inclusion of volume Correct answer with no working scores 3 marks Ignore SF except 1 SF Ignore negative amounts Allow alternative methods Allow TE throughout (a)(ii) for use of $x /(1.2-x)^{2}$ in K_{c} expression	(3)

Question Number	Answer	Mark
7(b)(i)	The only correct answer is C $\left(120^{\circ}\right.$ and $\left.109.5^{\circ}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because both angles are incorrect	
B is incorrect because 90° is incorrect		
D is incorrect because 109.5° is incorrect for the left hand $O-C-H$ angle		

Question Number	Answer	Mark		
7(b)(ii)	The only correct answer is $\mathbf{D}\left(\mathrm{atm}^{-1}\right)$			
	\boldsymbol{A} is incorrect because it is the inverse of the units for K_{C}			
\boldsymbol{B} is incorrect because it is the units for K_{C}				
\boldsymbol{C} is incorrect because it is the inverse of the units for K_{p}			\quad	(1)
:---:				

(Total Question 7 = 8 marks)

Question Number	Answer	Additional Guidance	Mark
7(b)(iii)	An explanation that makes reference to the following points - K_{p} will remain unchanged - equilibrium moves to right-hand side (to keep K_{p} constant) / only temperature affects K_{p}	Allow answers in terms of quotient Do not award M2 if K_{p} is described as changing Ignore comments related to rate	(2)

Question Number	Answer	Additional Guidance	Mark
8(a)	• colourless to (permanent pale/light) pink	Do not award purple for pink	(1)

Question Number	Answer		Additional Guidance	Mark
8(b)(i)	- double $\mathrm{C}=\mathrm{O}$ bond on left and right hand side - rest of diagram	(1) (1)	$\left[\begin{array}{cc} \ddot{\mathrm{O}} & \\ & \mathrm{O} \\ 0 & \mathrm{C} \\ 0 & 0 \end{array}\right]$	(2)

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	$\bullet(+) 3$	Allow 3+ / + III $/$ III $+/$ III $/$ three Ignore working out Do not award ± 3	(1)

Question Number	Answer	Additional Guidance	Mark
8(c)	to provide the hydrogen ions (needed as a reactant in the balanced equation) / to prevent formation of MnO_{2} / to prevent (brown) precipitate forming	Allow reaction needs acidic conditions Do not award 'acts as a catalyst' / just 'ensures reaction go to completion'	

Question Number	Answer	Additional Guidance	Mark
8(d)	- both platinum symbols and salt bridge - rest of diagram	$\begin{array}{l\|l:l\|l} \hline \mathrm{Pt}(\mathrm{~s}) & \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq}), 2 \mathrm{CO}_{2}(\mathrm{~g}) & {\left[\mathrm{MnO}_{4}-(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})\right],\left[\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]} & \mathrm{Pt}(\mathrm{~s}) \end{array}$ Allow solid lines for salt bridge Allow half cells shown correctly on opposite side Ignore omission of square brackets / state symbols if neither marked scored allow 1 mark for all four 'redox' species in ROOR order, separated by commas or dashed lines, but not solid lines	(2)

Question Number	Answer	Additional Guidance					Mark
8(e)(i)	- titres calculated and both ticks correct - mean calculated						(2)
		Run	Trial	One	Two	Three	
		Final volume / cm^{3}	17.50	34.10	17.20	34.10	
		Initial volume $/ \mathrm{cm}^{3}$	0.00	17.30	0.00	17.20	
		Titre / cm^{3}	17.50	16.80	17.20	16.90	
		Concordant titres (\checkmark)		\checkmark		\checkmark	
		Mean titre / cm^{3}					
		Both titres to 2 dp mean $=(16.90+16.80))^{2}$ allow TE for M2 for mea	$85 \text { (cm }$ One, Two	and Th	$=16.9$	$\left(\mathrm{cm}^{3}\right)$	

Question Number	Answer		Additional Guidance	Mark
8(e)(ii)	- calculation of moles of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})$ - calculation of moles of KMnO_{4} in titre - calculation of moles of KMnO_{4} in $100 \mathrm{~cm}^{3}$ - calculation of M_{r} for KMnO_{4} - calculation of mass of 1 tablet in mg to 2 or 3SF	(1) (1) (1) (1) (1)	Example of calculation $\begin{aligned} & (25.0 \div 1000) \times 0.200=0.005 / 5.00 \times 10^{-3}(\mathrm{~mol}) \\ & 5.00 \times 10^{-3} \times 2 \div 5=0.002 / 2.00 \times 10^{-3}(\mathrm{~mol}) \\ & 2.00 \times 10^{-3} \times(100 \div 16.85)=0.011869(\mathrm{~mol}) \end{aligned}$ $\begin{aligned} & 0.011869 \times 158=1.8754 \mathrm{~g} \\ & (1.8754 \div 5) \times 1000=375.07 \mathrm{mg}=380 / 375(\mathrm{mg}) \end{aligned}$ Correct answer with or without working scores 5 marks 0.38 g scores 4 marks (M5 not awarded) TE at each stage and on mean titre 379 mg from 0.012 scores (5)	(5)

Question Number	Answer	Additional Guidance	Mark
8(e)(iii)	An explanation that makes reference to the following points - (reaction is slow initially) as MnO_{4}^{-}and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ are (both) negative (ions) so will repel (each other) - when (sufficient) Mn^{2+} ions form they (auto) catalyse the reaction - Mn^{2+} ions will reduce MnO_{4}^{-}ions (as E^{θ} is more negative) forming Mn^{3+} ions OR $\begin{equation*} \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+4 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}\left(E^{\theta}=+0.02 \mathrm{~V}\right) \tag{1} \end{equation*}$ - Mn^{3+} ions then oxidise $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions (reforming Mn^{2+}) (as E^{θ} is more positive) OR $\begin{equation*} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{Mn}^{3+} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2} \quad\left(E^{\theta}=+0.85 \mathrm{~V}\right) \tag{1} \end{equation*}$	Allow 'heat is required to overcome high activation energy when catalyst is absent' Allow Mn^{2+} ions will react with MnO_{4}^{-}ions as E^{θ} is more negative Allow Mn^{3+} ions then react with $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions (reforming Mn^{2+}) as E^{\ominus} is more positive May be shown in equations and / or by calculating E^{\ominus}	(4)

